Adalahsuatu barisan dimana perbandingan dua suku yang berurutan selalu sama ( tetap ). Perbandingan tersebut lazimnya disebut dengan pembanding / rasio dan disimbolkan dengan r . Contoh 6 a. 2, 4, 8, 16, . adl barisan geometri dg suku pertama = 2 dan rasio ( r ) = b. 4, 2, 1, , . adl barisan geometri dg suku pertama = 4 dan rasio ( r ) = Top2: Soal Jika suku pertama suatu barisan geometri adalah 16 dan suku ketiga Pengarang: Peringkat 135. Hasil pencarian yang cocok: Jawaban paling sesuai dengan pertanyaan Jika suku pertama suatu barisan geometri adalah 16 dan suku ketiga adalah 36, hitung suku. Top 3: Jika suku pertama suatu barisan geometri 16 dan su Diketahuisuatu barisan 1 + x,10,x+16tentukan nilai x agar suku barisan tersebut menjadi deret geometri! (U2)Β² = (U1) x (U3)10Β² = (1+x) (x+16)100 = xΒ² + 17x +16xΒ² +17x - 84 = 0(x+21) (x-4)x, = -21x,, = 4 Kemudian Saya Sangat Menyarankan Anda Untuk Membaca Pertanyaan Selanjutnya Beserta Jawaban, Penjelasan, Dan Pembahasan Lengkapnya Guna pernyataan tentang kromosom dna dan inti sel yang benar adalah. BerandaDiketahui barisan aritmetika 7 , 10 , 13 , 16 , .....PertanyaanDiketahui barisan aritmetika 7 , 10 , 13 , 16 , ... a. Tentukan rumus ke βˆ’ n barisan tersebut!Diketahui barisan aritmetika a. Tentukan rumus ke barisan tersebut! IKI. KumaralalitaMaster TeacherMahasiswa/Alumni Universitas Gadjah MadaJawabanrumus suke ke dari barisan tersebut adalah .rumus suke ke dari barisan tersebut adalah .PembahasanDiketahui barisan aritmetika Suku pertama dan beda dari barisan tersebut adalah Rumus suku ke yaitu Jadi, rumus suke ke dari barisan tersebut adalah .Diketahui barisan aritmetika Suku pertama dan beda dari barisan tersebut adalah Rumus suku ke yaitu Jadi, rumus suke ke dari barisan tersebut adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!Β©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Diketahui suatu barisan 1,7,16, …. suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un=an^2+bn+c. Tentukan suku ke 100 Jawaban y = 2a 3 = 2a a = 1,5 x = 3a + b 6 = 3 Γ— 1,5 + b 6 = 4,5 + b b = 1,5 U1 = a + b + c 1 = 1,5 + 1,5 + c 1. = 3 + c c = -2 Un = 1,5n^2 + 1,5n – 2 U100 = 1,5 Γ— 100^2 + 1,5 Γ— 100 – 2 = + 150 – 2 = 117 total views, 2 views today Posting terkaitUntuk setiap pasangan variabel berikut ini, berikan pendapat kalianPada setiap diagram pencar di bawah ini Tentukan a. Apakah ada hubungan antara variabel x dan yTabel berikut ini memberikan informasi mengenai kandungan gula gram Oh iya, mulai sekarang kalian bisa pelajari materi ini melalui youtube ajar hitung, linknya di bawah ini ya 1. Perhatikan gambar pola berikut! Jika pola persegi tersebut dibuat dari batang korek api, banyaknya batang korek api pada pola ke-7 adalah... a. 40 b. 60 c. 84 d. 112 Pembahasan Perhatikan lompatan barisan di atas Jadi, banyaknya batang korek api pada pola ke-7 ada 112 Jawaban D 2. Segitiga tersebut tersusun atas batang-batang lidi. Banyak segitiga kecil pada pola ke-7 adalah... a. 45 b. 49 c. 54 d. 59 Pembahasan Perhatikan lompatan barisan bilangan di atas Jadi, banyak lidi pada pola ke-7 ada 84 Jawaban A 3. Dua suku berikutnya dari pola 4, 8 , 14, 22, adalah... a. 30, 42 b. 30, 44 c. 32, 42 d. 32, 44 Pembahasan Jadi, dua suku berikutnya adalah 32 dan 44 Jawaban D 4. Suku ke-15 dari barisan 2, 5, 8, 11, 14, ... adalah... a. 41 b. 44 c. 45 d. 47 Pembahasan Barisan di atas adalah barisan aritmatika karena memiliki beda yang konstan. Suku pertama = a = U1 = 2 Beda = b = U2 – U1 = 5 – 2 = 3 Suku ke-15 = U15 Un = a + n – 1 b U15 = 2 + 15 – 1 3 = 2 + 14 . 3 = 2 + 42 = 44 Jawaban B 5. Suku ke-45 dari barisan bilangan 3, 7, 11, 15, 19, ... adalah... a. -179 b. -173 c. 173 d. 179 Pembahasan Barisan di atas adalah barisan aritmatika, karena memiliki beda yang sama. Suku pertama = a = 3 Beda = b = U2 – U1 = 7 – 3 = 4 Un = a + n – 1 b U45 = 3 + 45 – 1 4 = 3 + 44 . 4 = 3 + 176 = 179 Jawaban D 6. Suku ke-50 dari barisan bilangan 20, 17, 14, 11, 8, ... adalah... a. -167 b. -127 c. 127 d. 167 Pembahasan Barisan di atas merupakan barisan aritmatika, karena memiliki beda yang sama. Suku pertama = a = 20 Beda = b = U2 – U1 = 17 – 20 = -3 Un = a + n – 1 b U50 = 20 + 50 – 1 -3 = 20 + 49 . -3 = 20 + -147 = -127 Jawaban B 7. Suku ke-8 dari barisan 64, 32, 16, 8, ... adalah... a. Β½ b. 1 c. 2 d. 4 Pembahasan Barisan di atas adalah barisan geometri, karena memiliki rasio yang sama Suku pertama = a = 64 Rasio = Jawaban A 8. Jumlah 9 suku dari 1 + 2 + 4 + 8 + 16 + ... adalah... a. 255 b. 256 c. 511 d. 512 Pembahasan Deret di atas adalah deret geometri, karena memiliki rasio yang sama Suku pertama = a = 1 Rasio = Jawaban C 9. Diketahui Nilai U20 adalah.. a. 32 b. 36 c. 42 d. 46 Pembahasan Jawaban A 10. Rumus suku ke-n dari pola 1, 10, 25, 46, ... adalah ... Pembahasan Mari kita uji masing-masing opsi di atas a. Opsi A U2 = 22 opsi A salah, harusnya U2 = 10 b. Opsi B U2 = 10 opsi B benar Jawaban B 11. Rumus suku ke-n barisan bilangan 3, 6, 12, 24, adalah... Pembahasan Barisan di atas adalah barisan geometri, karena memiliki rasio yang sama. Suku pertama = a = 3 Jawaban B 12. Diketahui barisan bilangan 2, 4, 8, 16, ... Rumus suku ke-n barisan tersebut adalah... Pembahasan Barisan tersebut adalah barisan geometri Suku pertama = a = 2 Jawaban C 13. Rumus suku ke-n dari barisan bilangan 64, 32, 16, 8, ... adalah... Pembahasan Barisan di atas adalah barisan geometri, karena memiliki rasio yang sama Suku pertama = a = 64 Jawaban B 14. Rumus suku ke-n dari barisan bilangan 9, 3, 1, 1/3, ... adalah... Pembahasan Barisan di atas adalah barisan geometri, karena memiliki rasio yang sama. Suku pertama = a = 9 Jawaban C 15. Diketahui barisan aritmatika dengan U5=8 dan U9=20. Suku ke-10 adalah.. a. -31 b. -23 c. 23 d. 31 Pembahasan selanjutnya subtitusikan b = 3 pada persamaan a + 4b = 8 a + 4b = 8 a + 4 3 = 8 a + 12 = 8 a = 8 – 12 a = -4 jadi, rumus Un = a + n – 1 b akan menjadi Un = -4 + n – 13 U10 = -4 + 10 – 1 3 U10 = -4 + 9 . 3 U10 = -4 + 27 U10 = 23 Jawaban C 16. Suku ketiga dan suku kelima dari barisan aritmatika adalah 17 dan 31. Suku ke-20 dari barisan tersebut adalah.. a. 136 b. 144 c. 156 d. 173 Pembahasan selanjutnya subtitusikan b = 7 pada persamaan a + 2b = 17 a + 2b = 17 a + 2 7 = 17 a + 14 = 17 a = 17 – 14 a = 3 jadi, rumus Un = a + n – 1 b akan menjadi Un = 3 + n – 17 U20 = 3 + 20 – 1 7 U20 = 3 + 19 . 7 U20 = 3 + 133 U20 = 136 Jawaban A 17. Suatu barisan geometri mempunyai suku ke-2 = 8 dan suku ke-5 = 64. Suku ke-13 dari barisan geometri tersebut adalah... Pembahasan subtitusikan r = 2 dalam persamaan ar =8 ar =8 = 8 2a = 8 a = 82 a = 4 Jawaban D 18. Jumlah semua bilangan kelipatan 7 dari 80 sampai 170 adalah... a. b. c. d. Pembahasan Bilangan kelipatan 7 merupakan barisan aritmatika dengan beda = b = 7 Kita susun dulu barisannya = 84, 91, 98, 105, ... , 168 Suku pertama = a = 84 Beda = b = 7 Kita cari dulu banyaknya suku dalam barisan tersebut n Un = a + n – 1 b kita gunakan suku terakhir 168 = 84 + n – 1 7 168 = 84 + 7n – 7 168 = 77 + 7n 168 – 77 = 7n 91 = 7n n = 91 7 n = 13 Rumus jumlah Jawaban C 19. Suku ke-3 dan suku ke-7 barisan aritmatika berturut-turut 10 dan 22. Jumlah 30 suku pertama barisan tersebut adalah.. a. b. c. d. Pembahasan selanjutnya subtitusikan b = 3 pada persamaan a + 2b = 10 a + 2b = 17 a + 2 3 = 10 a + 6 = 10 a = 10 – 6 a = 4 jumlah 30 suku yang pertama S30 Jawaban B 20. Dalam suatu deret geometri diketahui suku ke-1 = 512 dan suku ke-4 = 64. Jumlah tujuh suku pertama deret tersebut adalah... a. b. c. d. Pembahasan Suku pertama = a = 512 jumlah 7 suku pertama S7 Jawaban B 21. Banyak kursi pada barisan pertama di sebuah gedung pertemuan adalah 10. Banyak kursi pada barisan ke-4 adalah 80 sehingga penyusunan kursi tersebut membentuk deret geometri. Jika dalam gedung itu terdapat 5 baris kursi, banyaknya kursi dalam gedung adalah... a. 510 b. 420 c. 320 d. 310 Pembahasan Penyusunan kursi di atas membentuk barisan geometri. Suku pertama = a = 10 U4 = 80 n = 5 jumlah kursi dalam 5 baris S5 Jawaban D 22. Suatu bakteri akan membelah diri menjadi dua setiap menit. Jika banyaknya bakteri semula ada 6, banyaknya bakteri setelah 5 menit adalah.. a. 48 b. 96 c. 192 d. 384 Pembahasan Banyak bakteri semula = a = 6 Membelah menjadi 2 = rasio = r = 2 Banyak bakteri setelah menit ke-5 menit ke-0 juga dihitung dapat ditentukan dengan menghitung suku ke-5+1 = suku ke-6 Jawaban C 23. Dalam setiap 20 menit, amoeba membelah diri menjadi dua. Jika mula-mula ada 50 amoeba, selama 2 jam banyaknya amoeba adalah... a. b. c. d. Pembahasan Banyak amoeba semula = a = 50 Amoeba membelah menjadi 2 = rasio = r = 2 2 jam = 120 menit n = 1 + 120 20 n = 1 + 6 n = 7 jadi, kita cari U7 Jawaban C 24. Seorang pegwai kecil menerima gaji tahun pertama sebesar Setiap tahun gaji tersebut naik Jumlah uang yang diterima pegawai tersebut selama sepuluh tahun adalah... a. b. c. d. Pembahasan Gaji tahun pertama = a = Tambahan gaji per tahun = b = n = 10 tahun Sn = n/22a + n – 1b S10 = 10/22 x + 10 – 1 = 5 + 9 x = 5 + = 5 x = Jawaban C 25. Amir memiliki kawat dipotong menjadi 5 bagian yang ukurannya membentuk barisan aritmatika. Jika panjang kawat terpendek 15 cm dan terpanjang 23 cm, panjang kawat sebelum dipotong adalah... a. 85 cm b. 90 cm c. 95 cm d. 100 cm Pembahasan Panjang kawat membentuk barisan aritmatika Dipotong menjadi 5 = n = 5 Panjang kawat terpendek = a = 15 Panjang kawat terpanjang = U5 = 23 Sn = n/2a + Un S5 = 5/215 + 23 = 5/238 = 5 x 19 = 95 Jawaban C 26. Sebuah tali dipotong menjadi 6 bagian sehingga membentuk deret geometri. Jika panjang potongan tali terpendek = 3 cm dan potongan tali terpanjang 96 cm, panjang tali semula adalah... a. 198 cm b. 189 cm c. 179 cm d. 168 cm Pembahasan Panjang tali membentuk deret geometri Panjang tali terpendek = a = 3 Potongan tali terpanjang = Un = U6 = 96 Jumlah potongan = n = 6 Panjang tali semula = Sn = S6 Kita cari terlebih dulu rasio atau r Jawaban BUntuk yang kurang jelas dengan penjelasan disini dan kalian ingin belajar melalui video, kalian jangan lupa buat mampir di chanel youtube ajar hitung ya. Untuk soal ini kalian bisa klik link di bawah ini Hai Teguh, terimakasih sudah bertanya Kaka bantu jawab ya Dik 1, 7, 16, ... dan Un = an² + bn + c Dit U100? Jawab 1, 7, 16, ... -> a + b + c = U1 = 1 6 9 -> beda tingkat ke- 1, 3a + b = 6 3 -> beda tingkat ke- 2, 2a = 3 2a = 3 a = 3/2 ... 1 Substitusikan persamaan 1 ke dalam 3a + b = 6 33/2 + b = 6 9/2 + b = 6 b = 6 - 9/2 b = 3/2 ... 2 Substitusikan persamaan 1 dan 2 ke dalam a + b + c = 1 3/2 + 3/2 + c = 1 3 + c = 1 c = 1 - 3 c = -2 Substitusikan persamaan 1, 2, dan 3 ke dalam Un = an² + bn + c Un = 3/2n² +3/2n + -2 Un = 3/2n² +3/2n - 2 U100 = 3/2100² + 3/2100 - 2 U100 = 15000 + 150 - 2 U100 = 15148 Jadi, suku ke- 100 adalah 15148 Semoga jawabannya membantu ya Ÿ˜Š PertanyaanDiketahui barisan geometri 2, 4, 8, 16, ... Tentukan rasio, rumus suku ke-n dan suku ke-7 dari barisan barisan geometri 2, 4, 8, 16, ... Tentukan rasio, rumus suku ke-n dan suku ke-7 dari barisan adalah 2, rumus suku ke-n yaitu 2 n , dan suku ke-7nya adalah 128rasionya adalah 2, rumus suku ke-n yaitu , dan suku ke-7nya adalah 128Pembahasanmenentukan rasio r = U 1 ​ U 2 ​ ​ = 2 4 ​ = 2 menentukan suku ke-n U n ​ = a r n βˆ’ 1 = 2 2 n βˆ’ 1 = 2 1 + n βˆ’ 1 = 2 n menentukan suku ke-7 U 7 ​ = 2 7 = 128 Jadi, rasionya adalah 2, rumus suku ke-n yaitu 2 n , dan suku ke-7nya adalah 128menentukan rasio menentukan suku ke-n menentukan suku ke-7 Jadi, rasionya adalah 2, rumus suku ke-n yaitu , dan suku ke-7nya adalah 128 Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!17rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!WNWILLEM NOVANDRY SOPACUA Makasih ❀️TCTurina CahyowatiPembahasan lengkap banget

diketahui suatu barisan 1 7 16